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Abstract  

The cross section for X-ray resonant exchange scattering 
is reformulated in terms of linear polarization states 
perpendicular and parallel to the scattering plane, a basis 
particularly well suited to synchrotron X-ray diffraction 
experiments. The explicit polarization dependence of the 
terms is calculated for the electric dipole and quadrupole 
contributions. This expression, in turn, is rewritten in an 
orthonormal basis to highlight the dependence of the 
cross section on each component of the magnetic 
moment. This has the benefit of providing an empirically 
useful expression for the cross section. Diffraction 
patterns from a few simple magnetic structures are 
calculated. Finally, the correlation function measured at 
each resonant harmonic is derived. 

1. Introduct ion 

Large resonant enhancements of the X-ray magnetic 
scattering cross section were first reported in Ho by 
Gibbs et ai. (1988), who observed a significant increase 
in the signal on tuning the incident X-ray energy through 
the Lni-absorption edge. The enhancement was explained 
using an atomic picture of the electric multipole 
transitions by Hannon, Trammel, Blume & Gibbs 
(1988). Subsequently, larger enhancements were ob- 
served at the M edges of the actinides (Isaacs et al., 
1989). The large signal rates produced at resonance have 
allowed a variety of previously inaccessible problems to 
be studied with this technique and a number of elegant 
experiments have now been performed (Thurston et al., 
1993; Gibbs et al., 1991; Isaacs et al., 1990; Tang et al., 
1992; de Bergevin et al., 1992). The non-resonant cross 
section (i.e. that for incident X-ray energies far from any 
absorption edges) is well understood (Blume, 1985) and 
has been written in a form useful to practitioners in the 
field (Blume & Gibbs, 1988). However, the resonant 
terms in the cross section were originally formulated 
using vector spherical harmonics, a notation borrowed 
from resonance F-ray scattering (Trammel, 1962; 
Trammel & Hannon, 1969) and are less transparent in 
terms of their polarization dependence and sensitivity to 
individual components of the magnetic moment. 
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The purpose of this paper is first to reformulate the 
cross section of Hannon et al. (1988) using the same 
basis as that of Blume & Gibbs (1988), which is a natural 
choice for synchrotron X-ray scattering experiments. In 
particular, we rewrite the cross secti~ ,n in the form of 
2 × 2 matrices in a basis whose components are 
perpendicular and parallel to the scattering plane. By 
convention, these are labeled cr and :r polarizations, 
respectively. This representation highlights the polariza- 
tion dependence of each term in the cross section in a 
manner which it is hoped will be of use to experimenters. 
We further decompose the magnetic moment of the 
scatterer into orthogonal components to elucidate how 
each component contributes to the scattering. The 
resulting expression is a particularly useful one for 
resonant magnetic scattering. Diffraction patterns from 
simple magnetic structures are then calculated to 
illustrate the ease with which this can be done. 

In the second half of this paper, we derive the 
correlation functions measured at the various diffraction 
harmonics observed in incommensurate magnetic struc- 
tures at resonance. This has particular application to 
recent experiments in holmium in which non-mean-field 
scaling was observed in the temperature dependence of 
the resonant harmonics (Helgesen et al., 1994). 

2. The cross section 

Following Hannon et al. (1988), we begin by writing the 
total coherent elastic scattering amplitude for scattering 
from a magnetic ion: 

f =f0  + f ' + / f "  "3t-Lpin • (1) 

Here, fo <xZro is the Thomson charge scattering 
amplitude a n d  fspin the non-resonant spin-dependent 
magnetic scattering amplitude. Far from resonance, f '  
and f "  contribute terms proportional to the orbital and 
spin angular momentum, and the total non-resonant 
magnetic scattering amplitude is (Blume, 1985; Blume & 
Gibbs, 1988) 

f (magic s = iro(hog/mc2)fo[½ L(Q).  A -4- S(Q)-B], (2) 

where L(Q) and S(Q) are the Fourier transforms of the 
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atomic orbital and s p ~  magnetic densities, ^respec- 
tively. A =,2(1 - k .  k')(~' x 3) - ( k , x  3)(k. k') + 
(k' x ~') (k • 3) .and B = (3' x 3) + (k x #) (k ' .  3 ) -  
(k x 3) (k .  ~') - (k' x ~') x (k x 3), where ~ and g are 
the incident and scattered polarization vectors, respec- 
tively, and k and k' are the incident and scattered wave 
vectors, respectively. Q = k ' - k  is the wave-vector 
transfer and fo  is the Debye-Waller factor• The 
resonant processes discussed here enter the cross 
section through f '  and f ' .  Although both electric and 
magnetic multipole transitions contribute, the electric 
dipole and quadrupole transitions are the dominant 
processes, if allowed• The magnetic multipole contribu- 
tions are smaller by a factor hoo/mc 2 (Hannon et al.,  
1988) (< 1/60 for typical X-ray edges) and are not 
considered here• 

For the electric 2L-pole resonance in a magnetic ion, 
the resonant contribution to the coherent scattering 
amplitude is (Hannon et al., 1988) 

L 
• V (e) (~rr~v(e)*[~'~ 3]Ft(~(og), f~L(O2)=(4rr/Ikl)fD ~ [~* l t ~ v "  J--t,M ~-J" 

M = - L  

(3) 
where Y(t~(l~) are vector spherical harmonics. The 
strength of the resonance is determined by the factor 
Ft~,  which, in turn, is determined by atomic properties: 

(~) 
F~(o ) )  = ~_,[P,P,(rl)F~(otMrl; E L ) /  F(rl)]/[x(ot, )1) - z]. 

ot,rl 

(4) 
Here, r/ is the excited state of the ion and (~ the initial 
state. P ,  is the probability of the ion existing in the initial 
state a and P,~(r/) the probability for a transition from a to 
a final state r/. It is determined by overlap integrals 
between the two states ct and r/. F x / F  is the ratio of the 
partial line width of the excited state due to a pure 
electric 2L-pole (EL) radiative decay to that due to all 
processes, both radiative and non-radiative (including, 
for example, Auger decay). Finally, x = ( E , -  
E , -  ho)) / (F/2)  is the deviation from the resonance 
condition in units of the total half-width. [An alternative 
derivation of this cross section based on symmetry 
arguments has recently been presented by Blume 
(1994).] This form of the scattering amplitude is valid 
for isotropic systems in which the symmetry is only 
broken by the magnetic moment. The application 
of the symmetries of a particular point group produced 
by the local environment will alter the allowed terms. 
Such effects were used to explain the azimuthal 
dependence of resonant charge scattering at Bragg 
forbidden positions in Fe203, which has a C a point 
group at the Fe site (Finkelstein, Shen & Shastri, 1992; 
Finkelstein, Hamrick & Shen, 1993; Hamrick, 1994; 
Carra & Thole, 1994). M. Blume (unpublished work) has 
considered a number of common point groups and the 
case of the cubic group has been considered in detail by 
Rennert (1993). 

2.1. Electric dipole transitions (El)  

Electric dipole transitions usually dominate the 
resonant magnetic cross section and are the simplest to 
calculate. An example of such a transition is the 
2P3/2--+ 5dl/2 transition of Ho, which occurs at the 
/_,m-absorption edge• At such a transition, the vector 
spherical harmonics can be written (Berestetskii, Lifshitz 
& Pitaevskii, 1971), for L = 1, M = 4-1: 

^!  , 
[3'. Yl±l(k )YI+I(I~) 3] =(3/16n)[F • 3 :F i(F x 3). ~, 

- (3'. ~,,)(3. ~,°)]; (5) 

and, for L = 1, M = 0; 

[g .  Y,0(l~')Y~0(l~). 3] = (3/8zr)[(F. ~,)(3. ~.,)]; (6) 

where ~, is a unit vector in the direction of the magnetic 
moment of the nth ion. Thus, 

fXlm~S = [(3'. 3)F (°) - i(3' x 3). ~,,F 0) 

+ (3'. ~,,)(3 • i , )F  (2)] (7) 

with 

F (°) = (3/4k)[Fll + FI_ l] (8) 

F (1) --- (3/4k)[Fll - FI_I] (9) 

F (2) -- (3/4k)[2F1o - Fll - Fl_~]. (10) 

The first term of (7) simply contributes to the charge 

1 i~,0 ) 3 ' . 3 =  0 .1~ " (11) 

Bragg peak, since it contains no dependence on the 
magnetic moment• In an incommensurate antiferro- 
magnet, the second term produces first-harmonic mag- 
netic satellites and the third term, which contains two 
powers of the magnetic moment, produces the second- 
harmonic magnetic satellites. The amplitude of the 
scattering is controlled by the overlap integrals, making 
it possible, at least in principle, to observe very small 
magnetic moments. For example, Isaacs et al. have 
observed scattering from URu2Si 2 with an ordered 
moment of only 0.02#~, by tuning to the Mw-absorption 
edge of U (Isaacs et al., 1990), for which there is a large 
overlap between initial and excited states. 

We now write the dipole operator of (7) as a 2 x 2 
matrix, with the polarization states chosen either parallel 
or perpendicular to the scattering plane as shown in Fig. 
1. This representation was first used by de Bergevin and 
Brunel in their derivation of the non-resonant magnetic 
cross section for X-ray scattering (de Bergevin & Brunel, 
1981). It is easy to see that the first term connects only 
states for which the polarization is unchanged, i.e. an 
3, photon is scattered into an ~11 (so called zr ~ Jr 
scattering) and 3± ~ ~'± (or a --+ cr scattering). Thus, this 
matrix is diagonal ,,with elements ~'± .3x = 1 and 
~11 "311 = cos 20 = k .  k'  and 
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On the other hand, the second term allows a ~ zr 
scattering as well as zr ~ Jr scattering, but a ~ cr 
scattering is forbidden and the matrix representation is :(_o ) 

x l ~  . i , ,  (12) 

,,, = and where the off-diagonal elements are ~11 x ~± - k '  
~v± X ~11 = k .  T h e  matrix representation of the third term 
is obtained in a similar fashion. The identities 

k .  l~' = cos 20 

1 - (1~. !~') 2 -- sin 2 20 

!~' x !~ = -I~12 sin 20 

!~ + f~' = 2I~I1 cos 0 

f~ - !~' = 2U3 sin 0 

i 

are used to obtain the final result: 

(13) 

~ s  

0 ) 
o l i ' . ~  -~ . ' . i .  ( i , ' x~ ) . i , ,  

-t'- {F(2)/[I -- ~ ' "  ~,)~l} 
[(i:' x fo-~,,]~ [~'. ~,, - (~. ~')~. i. ](re x fo.  i,, 

x [Oi. ~')i:' • ~,, - f~. i,,](f¢ x F,). & (~. ~')[(~. z'.) ~ + (~'. ~.,)2] 
-[~ + 01. li')~][(~ • i°)01' • i,)] 

. 

(14) 
A similar expression has also been obtained by Pengra, 
Thoft, Wulff, Feidenhans'l & Bohr (1994):, 

Next, we resolve each of the vectors k, k'  and [,, into 
their components along Ul, U2 and U3, the coordinate 
system defined with respect to the diffraction plane (Fig. 
1). This results in the following expression for the 
resonant dipole scattering amplitude: 

Ua 

A 

U3 

Fig. 1. The  coordinate system used in calculating the polarization 
dependences.  0 is the Bragg angle. 

f, XRES=F<0)(10 0 )__iF(,)( 0 z, cosO+z, sinO"~ 
I cos20 \ z  3 sin0 - z, cos0 - z  2 sin20 J 

+ F(2) ( ~ - z 2 ( z  I sin 0 - z s cos O) "~ 
\+z2(z ~ s i n O + z 3 c o s O )  _ c o s 2 0 ( ~ t a n 2 0 + ~ )  ] ,  ( 1 5 )  

where 0 is the Bragg angle. From (15), it is possible to 
see which components of the magnetic moment con- 
tribute to the scattering for a given experimental 
geometry and, as we shall show in the next section, this 
is all that is required in many experiments. However, if a 
detailed comparison is to be made between (15) and a 
data set, then it is necessary to compute the magnitude of 
the coefficients FLM. This is beyond the scope of this 
work, but the coefficients have been evaluated by 
Hamrick (1994) for several rare-earth elements. 

2.2. Electric quadrupole transitions (E2) 

We now carry out a similar procedure for the 
quadrupole contribution to the resonant cross section. 
An example of such a transition i s  the 2p3/2 ~ 4f 
transition at the Lin edge of Ho. While the scattering 
from such processes is typically weaker than that due to 
electric dipole transitions, it can be significant. For 
example, in an incommensurate antiferromagnet, the 
quadrupole terms produce two extra resonant harmonics. 
These have been observed experimentally (see, for 
example, Gibbs et al., 1988) and it is an interesting 
question as to what magnetic properties are being probed 
at these harmonics. It is hoped that the results of this 
section will allow such questions to be answered. 

We begin, as before, with the expansion of the vector 
spherical harmonics (Hannon et al., 1988; Hamrick, 
1990). For the L -- 2 case, 13 distinct terms are produced 
of various orders in the magnetic moment: 

order zero 

+(!~' l~)(~' ~F(°); " " ] E2 

order one 

-i[(l~'.  fQ(~' x a)- ~, + (~'-~)(fd x fQ. £ , ]F~;  

order two 

+ [(~:' • ~:)(~'. &)(~. ~,) 

+(~ '  . . . .  ~)(~' ~,)01 i.)](F(~ ) .~(°hE2, 

+ [(~' . . . . . .  i ) (k '  ~,,)(~ ~,,) + ~ '  ~)(~' ~,)(k z,)]FE2 ^ (2) 

[(~' x l~) i,,(~' x ~) " '  (o). - -  . . Z n W E 2  , 

order three 

- i [ ( f d .  ~,)(f~. ~,)(~' x ~). ~:. 

+ (~'. "2,)(~:. "~,,)(fd x fQ. ~,](F(~ - F(~) 

- i[(~'. ~, , ) ( k : .  ~, , ) (k : '  x [ ) .  ~,, 

+ ( r e .  ~ , ) (~  • ~, ) (~ '  x fo  • --,,..- ~' ~(3).e2, 
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order four 

+(!~'. ~,,)(!~. ~.,)(~'. ~,)(~. ~,)F(~; 

where 

F(~ = (5/4k)[F::  + F:_:] 

F(e 1) = (5 /4k)[Fz2 - F~_2] 

F(2) 2 . _  (5/4k)[F~_ 1 + F2_l ] (16) 

F(3) 2 = (5/4k)[Fzl  - F2_l] 

F(4) 2 = (5/4k)[Fz2 + F2_2 - 4/721 - 4Fz_ , + 6F20]. 

We now write these terms in the matrix representation of 
the previous section. The algebra is straightforward, if 
somewhat tedious. The following result for the polariza- 
tion dependence of the resonant electric quadrupole 
terms is obtained: 

fn XRES E2 

= ~(o) 0 , 
- ~  (f~ . f~ )~ 

fie x f') i L (f,' . f,)(f, . L)  
- iF(t2) ( - ( f (  . k)(f~ . ~,,) 2(l~' . l~)( l~ 'x I~) . i , )  

-~ 1 - - - - ~  2 \M~, M221 

+ ~'(. 22) - ( i '  x l~). i,(f( • ~,) 2(f(. l~ )(1~'. ~,)(1~ • i,) ] 

- i f , ' .  ~.)~ _ (~.  L)  ~ ] 
o (f,' × ~). L(~-~.,) 

- F(°) -( i~'  × I~). ~,(1~' • ~,)  [(!~' x !~). ~,]2 ] 

i(F~ff2 ) - F(e')~) ( ' M~, 

F(~ 4)(~' . ~,)(k. ~..) 
1 - (1~'. i~) 1 

[01' × i) .  L] ~ 

# .  f,')~'. ~. 
-f,. ~,lO~' × i) .  ~., 

IM13 2 "~ iF(e3)2_ (2M3, 2M~2 
'M32] 1-(!~'.1~) 2 ~,2M23 , :M2~: 

[£'. ~., - 0~. f,')f,. ~-.](f,' x i ) .  L 

(~. ff)[0~, i,) ~ + (ft. L) ~] 
-[1 + ~ .  f()2][~, i , )~ ' ,  i,)] 

(17) 

where the matrix elements of the first second-order term 
are 

M~I = 

M221 = 

M ~ =  

{(f(. f0[(k' x fQ. i ,]  2 

+ [1 - (!~'. !~)2](!~ ' .  i,)(f~ • i,,)}(f(, k) -1 

(~' x ~).  L[(~ '  • i , )  - (f~'. ~)(f~ • i,)] 

(~' x i 0 .  i , [ (~ ,  f o ( f f ,  i , )  - (f~. L)] 

( f t .  ~)[( f ,  • i , )  ~ + ( f ¢ .  i , )  ~ 

- 2 ( f ( .  k ) ( l ~ ,  i , ) ( f (  • i , ,)]  

(18) 

and the matrix elements of the two third-order terms are 

IM31 -- [(]~' × ]~). Zn] 3 

~M32 = (l~'. ~,,)(l~ • ~,)2[1 - (l~. l~') z] 

+ [(ff x ~) .  L]~[ff • L - (k-  L ) ( f f .  ~)1 
1M231 = -(1~'. ~,)2(1~. ~,)[1 - (1~ .  !~') ~] (19) 

+ [(ff x f,). ~,]~[-~ • ~, + (~ ' .  L ) ( f f .  k)] 
1M23 2 -- (l~' x l~). z,{[(l~ • ~n)2 + (l~'. ~,)2] 

-- 2(!~'.  i~)(!~ • ~,)(!~' • i , ) } ( l~ ' -  !~) 

and 

2M131 = 

2M312 - -  

2M31 --. 

2Me32 = 

(~' × ~ ) - L [ 2 ( i .  i f ) d , - L ) ( k ' .  L )  

- ( ~ .  L )  ~ _ ( ~ , .  L )  ~1 
- [ ( f f  × ~)" L]~(~ • L) ( f f"  ~) 

- (k'" L ) [ ( ~ '  • L )  - (k" ~',)(ff" i:)] ~ 

[(~' x f0" L]~(ff • L) ( f f"  ~) 

+ (~" ~',)[(f~ • L )  - ( i f -  L) ( f f"  ~)1~ 
(~t × l~) .  Zn[(l~ • 7..n) 2 -91- (l~ t .  ~..n)2 

-- 2(!~''  !~)(1~ • ~.,)(!~' • ~,)1(!~''  I~). 

(20) 

We are now in a position to write an expression for the 
dependence of the quadrupole contribution on the 
individual components of the spin. In the same 
coordinate system as before, we obtain 

XRES 
E2 o) 

o 

+ ic2F~)(  z2t2 - z , c - z , s ~  
--Z3S "JI- Z 1C 2Z2S2 / 

2 2 2 • ~-e°))(z'a + z2¢2 - z ~  -z,z2sc~ + z~z3cc~ 
(F~e~ + 

\ z,z2~c~ + z2z~cc~ ~(z~ + z~) 
o -z,z~c - z~z~s'~ 

+ ~ ] 3  z ,z~c-  z~z~s -s:<z~ + 4)  Y 

+ s21~e~ ( o z~z2c + z2z3s'~ 
-z~z~c +z2z3s -z~s2 ] 

-z~s2 z ~  + z~z3s~ 
-z l~s2  c + z1~s2s 

-i(F~e~) - - ~  c3 + 8z3 sc2 -z2c2s2(8  ~- 4 )  

~ )  - z ~ s ~ c -  ~s  ~ 
-JI-ZI4S2 C -- ZlSS2S 
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_~r~ ~, 
zl~cc2 

+~z3(s~ + ~) 
--Z~2Z3C2S 
+ z ~ ( c  3 + s2s) 

~, +~ce + ~  
g ~ d - z ~  ~ 

+F~ I -z,z~+ ~ + ~z~ s~ 
\ -z~+e +gz~z/ 

--zlz22cc2 
+~z3(s~¢ + ~3) 
--Z~2Z3CzS 
- z ~ ( c  3 + s2s) 
- ~  + z]ds 

-z~c~h(g + ~) 

z~z~s ~ - ~z~s~ \ 
-hz~cs ~ + z~z~z~? ) dZ~3(C 4 2 I- S 4) 

-(z 4 + z4)s~d 
(21) 

where we have used the shorthand notation c = cos 0, 
c 2 = c o s 2 0 ,  c 2 =COS20 etc. Despite the apparent 
complexity of (21), it can be of use in interpreting 
resonant scattering data. For example, in recent work on 
NdzCuO 4, a large resonant enhancement was observed at 
the Nd L n edge (Hill, Vigliante, Gibbs, Peng & Greene, 
1995). Polarization analysis of the scattering revealed it 
to be entirely cr ~ Jr with little or no cr ~ cr component. 
For the particular geometry of the experiment, z~, z2 and 
z 3 # 0. Inspection of (21) shows that in such a situation 
the observed scattering cannot be due to qudrupolar 
excitations, since cr-+ tr is an allowed channel in the 
first-order terms. Therefore, the scattering is dipole and 
this in turn implies a polarization of the Nd 5d bands. 

3. Examples 

The expressions derived above are generally applicable. 
In order to illustrate their use, it is helpful to study some 
particular examples. We choose three magnetic structures 
common amongst the elemental rare earths. 

3.1. Basal-plane spiral anti ferromagnet 

We first take the case of a basal-plane spiral, such as 
occurs in Ho, Tb and Dy. In this structure, the moments 
are confined to the ab plane in ferromagnetic sheets. The 
direction of the magnetization rotates from basal plane to 
basal plane, creating a spiral structure propagating along 
the c axis. The modulation vector then lies along (00L). 
The magnetic moment takes the form 

i n = COS('~" rn)[J 1 + sin(z, rn)U 2. (22) 

Now, the full X-ray scattering cross section may be 
written as 

dcr/dI2 = y]  P~I (2'l(Mc)12) - i(hw/mcZ)(2'l(Mm)12) 
,u' 

t XRES . . .  12 + (2 I(m~ )12) + (2'l(m~eS)12) + , 
I 

(23) 

where 2, 2' are incident and scattered polarization states 
and P~ is the probability for incident polarization 2. (Mc) 
etc. are the expectation values of the respective operators 
in the initial and final state la) of the solid, i.e. 
(M XRES) (al }--~n exp (iQ XRES = • rn)fn~l [a). For the pur- 
poses of this example, we assume that the dipole 
contribution is dominant and ignore any interference 
effects. This will be valid at resonance and away from 
charge Bragg peaks, then 

M xREs = ~ exp (iQ. r,) 
n 

x ( ~F(2) -izl c°sOF(l)-Z2ZlsinOF(2)~ 
\izt cos OF o) +z2z~ sin OF cz) iz 2 sin 20F 0)-~ sin 2 OF o) ]" 

(24) 

For simplicity, we take Pa = 3a~, which is a reasonable 
approximation for a bending magnet source at a 
synchrotron, then only tr--+ cr and tr ~ rr terms 
contribute and 

do'/dX2 = (al ~ exp( iQ,  rn)z~F(2)la) 
n 

(al c o s o r  + ~ exp (iQ. rn)(iz 1 -̂-~1) 
n 

"1- Z2Z 1 s i n  OF(2))la ) 2. (25) 

Substituting z 1 -- cosOr, rn), z 2 - sin(z, rn) and writing 
the sine and cosine terms as the sums of complex 
exponentials, we obtain the cross section for a flat spiral 
with incident radiation perfectly polarized perpendicular 
to the scattering plane: 

dcr/dOlX~ Es = ¼ F2C2)3(Q - G) 

+ ¼cos 2 0F20)(Q - G + z) 

+ ~6 (1 + sin 2 0)F2(2)3(Q - G 4- 2,). 

(26) 

The intensity of the observed scattering will only be 
proportional to the expression above if both polarization 
components of the scattered beam are collected with 
equal weight. This is the case if no analyzer crystal is 
employed. If one is used, then the polarization 
component that is in the scattering plane of the analyzer 
must be weighted by a factor cos 2 20 a, where 0 a is the 
Bragg angle of the analyzer crystal. From (26), we see 
that, in addition to producing scattering at the Bragg 
peak, the resonant dipole contribution produces two 
magnetic satellites at 4-T and -t-2T on either side of the 
Bragg peak. We may calculate (Pengra et al., 1994) the 
ratio of the factors FO) /F  C2) in Ho using the published 
value for the ratio of the first two resonant harmonics 
(Gibbs et al., 1991) and (26), 

I(O, O, 2 + z) (2F(I)~ 2 cos 2 0 
I(0, 0, 2 + 2~) = \ FC2) ,/ (1 + sin 2 0) "_ 30 (27) 

:=~ FO) /F  (2) ~ 2.7. (28) 
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As we shall see in the next example, knowledge Of this 
ratio allows one to calculate relative intensities of 
resonant peaks in Ho for structures other than a basal- 
plane spiral. 

We shall now briefly consider the contribution to the 
scattering from the E2 resonant process. From inspection 
of (21), it can be seen that, in the a-to-n" channel, the E2 
resonance produces satellites not only at the first 
harmonic [second term of (21)] and second-harmonic 
satellites (third, fourth and fifth terms) as was shown to 
be the case for the E1 resonance, but also at the third 
(sixth and seventh terms) and fourth (eighth term) 
harmonics. These additional peaks have been observed 
in Ho (Gibbs et al., 1988, 1991) and already discussed in 
terms of electric multipole transitions (Hannon et al., 
1988). It is interesting to note that no report has yet been 
made of higher harmonics in the magnetic scattering 
from Ho not arising from the cross section. At low 
temperatures, the moments in Ho bunch around the 
nearest easy axis in the hexagonal basal planes, which 
gives rise to intense fifth and seventh harmonics in 
neutron scattering experiments. Given the signal-to-noise 
ratio routinely achievable at a synchrotron, we suggest 
that these harmonics should be observable with X-rays. 

72.5 ° , the tilt angle for which the maximum diffract- 
ed intensity at the z satellite would be observed. Hence, 
one can, in principle, obtain information regarding 
spin reorientation transitions from resonant intensity 
data. 

3.3. c-axis modulated structures 

The rare earths Er and Tm form c-axis modulated 
(CAM) structures. In these phases, the direction of the 
moment is aligned along the c axis of the h.c.p, structure 
and the magnetic moment is sinusoidally modulated, 
with wave vector z. The resonant scattering from such 
phases was first discussed by Bohr, Gibbs & Huang 
(1990). For the CAM structure, 

~, = sin(z, rn)l~I 3 (33) 

and the cross section greatly simplifies. For a a-polarized 
incident beam at a dipole resonance, then only the first 
resonant harmonic is seen along the (00L) direction. The 
scattering amplitude is 

A =  ~ e x p ( i Q . r , ) [ - i F ( 1 ) s i n O s i n ( z . r , ) ]  (34) 
n 

3.2. c-axis conical spiral 

In this example, we treat the case in which moments 
are tilted at. an angle ot to the c axis, in addition to 
spiraling around the c axis. Such a conical phase occurs 
in Ho and Er at low temperatures. In this case, 

~,, = sin t~ cos(T • r , )U I + sin ct sin(T • rn)U 2 -k- cos oriel 3. 

(29) 

For simplicity, we consider only the tr ~ zr dipole 
scattering. This would be measured in an experiment in 
which a polarization analyzer was employed to select 
only such rotated components of the scattering beam. In 
this case, 

f~-~'~= - i  cos ot sin OF (1) 

+[(i cos 0 sin ct)/2](F (1) qzcos otF (2)) exp(4-ilr • r,,) 

:F [(i sin 0 sin / ot)/4]F (2) exp(4-i2x • r,). (30) 

Note that here the presence of a c-axis component to the 
magnetic moment that is not modulated produces a 
'mixing' of the terms, that is some 'second-order' terms, 
F (2), contribute to the first-harmonic satellite. 

Further, as noted by Pengra et al. (1994), the intensity 
of the first harmonic has a maximum as a function of the 
tilt angle or. The amplitude of the scattering at ~r, A~, is 

• a~ = a '  sin ot(F 0) q: cos otF(2)), (31) 

OAJOot = 0 =:~ cos or/cos 2o~ = :FF(2)/F (1). (32) 

Substituting F(Z)/F (l) = 2.7 for Ho, we obtain Otma x = 

and the observed intensity is therefore 

I = F2(0[(sin 2 0)/418(Q - G 4- ~). (35) 

All of the scattering is of the type o" --+ zr. The presence 
of quadrupole contributions will give rise to additional 
harmonics at 4-2~(cr ~ o') and 4-3~(cr ~ n'). However, 
there are no E1 or E2 fourth-harmonic satellites for the 
CAM structure along (00L) for purely a-polarized 
incident light. 

Both Er (Sanyal, Gibbs, Bohr & Wulff, 1994; 
Helgesen, Hill, Thurston & Gibbs, 1995) and Tm (Bohr, 
Gibbs & Huang, 1990; Helgesen, Hill, Thurston & 
Gibbs, 1995) have been investigated using resonant 
X-ray magnetic scattering. Bohr et al. (1990) found that 
the first harmonic of Tm exhibited only a --+ Jr scattering 
at the Lni-absorption edge, consistent with the above 
analysis. Further, no third harmonic was seen. However, 
second and fourth charge harmonics were observed, 
arising from lattice modulations. These obscured the 
investigation of any resonant harmonics at these posi- 
tions. Similar results were obtained for Er (Sanyal et al., 
1994; Helgesen, Hill, Thurston & Gibbs, 1995). How- 
ever, in this case a third harmonic was observed 
(Helgesen, Hill, Thurston & Gibbs, 1995). Based on 
relative intensities, the authors attributed this harmonic to 
a magnetic structural peak arising from a non-sinusoidal 
modulation and not a quadrupolar contribution. We 
conclude that the scattering observed from CAMs is 
consistent with that expected from the single-electron 
approximation of Hannon et al. (1988). 
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4. Correlation functions 

The importance of X-ray scattering as a probe of 
condensed-matter systems arises from the connection 
between the scattering cross section and calculable 
correlation functions. For charge scattering from atomic 
electrons, the cross section is proportional to the Fourier 
transform of the equal-time electron-density-electron- 
density correlation function (p(r)p(0)). The goal of this 
section is to calculate similar relations for resonant 
scattering. In order to do so, we will use a restricted set of 
the generalized functions of Luo, Trammel &Hannon  
(1993), following an approach of Hamrick (1994). This 
has the advantage of deriving correlation functions in 
terms of intuitive quantities. However, as a result of the 
approximations used, the analysis is restricted to elastic 
scattering. Therefore, the correlation functions derived 
are static ones and not the usual instantaneous correlation 
functions of quasi-elastic X-ray scattering. Nevertheless, 
this approach is useful since the difference between 
elastic scattering and quasi-elastic scattering is typically 
only of importance in the vicinity of a second-order 
phase transition, where the dynamic fluctuations become 
important. Further, static disorder is often of great 
interest and thus a mathematical basis for analysis of 
peak line shapes is of some utility. Finally, differences in 
the temperature dependence of Bragg elastic scattering at 
the different harmonics in the elemental rare earths 
(Helgesen et al., 1994, 1995) may be explained by such 
an approach. 

The initial part of the derivation follows the work of 
Luo et al. (Luo, Trammel &Hannon, 1993; Luo, 1994) 
and Hamrick (1994), which we then extend to obtain the 
correlation functions. Although none of the mathematics 
of this section are new, the final relationships are 
sufficiently useful to warrant inclusion in this paper. In 
order to obtain such expressions, one is required to make 
some approximations and generality is necessarily lost. 
The assumptions chosen are reasonable for the particular 
case of the rare earths. Care must be taken in using the 
derived expressions outside their range of validity. 

In this section of the paper, we are no longer 
concerned with the polarization dependences and it is 
convenient to collect them into a single term, P*. The 
cross section, for pure electric multipole transitions (i.e. 
L' = L) may be written 

f~L(W) (4zr/lkl)fD Y~ * ^* "" = Ft~,;~(w)Pt.M,;x.~(~' , k ,  ~:, k),  
MM' 

(36) 

where 

e/~* t~-'* ^'. = , ; / . ~  , k ,  ~, f~) e'*"--LM'~," V(e) t'kt~v(e)*cL'~lXLM kr'I ~" (37) 

Here, L - -  1 and 2 for electric dipole and quadrupole 
transitions, respectively, and k = Ikil = tkfl is the 
momentum of the photon. As before [(3)], it simplifies 
matters to restrict ourselves to transitions for which 

M' - M. If the system is invariant to rotations about an 
axis parallel to the local field direction, then such 
transitions are the only ones allowed by azimuthal 
symmetry. In fact, even if azimuthal symmetry is broken, 
one may still expect M ' - - M  to hold, at least 
approximately, if the exchange interaction dominates 
crystal-field effects. Also, for dipole transitions, the same 
restriction holds even for strong crystal fields if the point 
group is C 3, C a or C 6 (Hamrick, 1994). Note that, in this 
formalism, scattering events in which the value of Jz is 
altered are not permitted and therefore only a limited set 
of inelastic fluctuations (for example those in Jx and Jy) 
will be contained in any correlation function derived 
from these operators. Rather than derive a dynamic 
structure factor that does not include all possible 
fluctuations, we have chosen to restrict the analysis to 
the purely elastic case, as mentioned in the beginning of 
this section. Following Hamrick (1994), we decompose 
the coefficients Ft_M into a resonant piece and an 

L 
amplitude coefficient, Aq0. For clarity, the sum Y~=-L 
is written }-]~q~--0 so that q -- 1 corresponds to scattering at 
the first harmonic of an incommensurate structure, q -- 2 
at the second harmonic and so on. Then, 

) f~E~(oa) = E ('~/'~res){rO/[Xres(0)) - - i ] } a ~  L) 
q=0 res ces 

x e*(~'*, ^'" k,~,~) (38) 

with 

A~ L) = [mc2/(Fres/2)]47r[(L + 1)(2L + 1)/L] 

x (1/[(2L + 1)[!]2}[(2l + 1)/(2l' + 1)] 

x (kao) ~ (Rhl(r/ao)L[Rv) z 

X C 2 ( I , L , r ; o , o , o ) c ~ L ) ( I ' ; I j ) ,  (39) 

where Xre s = (E C - E i - hw) / l " c /2  is the deviation from 
resonance in units of the half-width of the excited state 
and [Rh) and [Rv) are single-electron hole and valence 
wave functions. C( Jl, J2, J3; ml, m2, m3) is a Clebsch- 
Gordon coefficient and Cqo the amplitude. The great 
contribution of Luo, Trammel & Hannon (1993) and 
independently Carra and co-workers (Carra, Thole, 
Altarelli & Wang, 1993; Carra, K6nig, Thole & Altarelli, 
1993; Carra & Thole, 1994) was to express the amplitude 
coefficients Cq0 in terms of experimentally significant 
quantities, the electron spin and orbital moments. This 
procedure is valid within the fast-collision approxima- 
tion. That is, when either the deviation from resonance, 
A w  = Ec - E a - hw, or the width, F C, is large compared 
to the splitting of the excited-state configuration. This 
approximation is expected to hold for the LiI and Lni 
edges of the rare earths and actinides and for the Miv and 
M v edges of the actinides. In this regime, the resonant 
factors can be summed independently leaving amplitude 
coefficients that may be written in terms of multipole 
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moment operators, which are themselves single-particle 
operators summed over the valence electrons in the initial 
state. These effective scattering operators, M ~  L), are 
related to the amplitude coefficients by (Hamrick, 1994) 

C ~  L) =(- -1 )L-q[ (2 t+  1 ) / (2q+  1)] 1/2 (~[M~L)Iap), (40) 

where laP) is the many-electron wave function of the ion. 
For electric dipole transitions (Luo, Trammel &Hannon,  
1993), 

M(om)=[( jq-1 /2) / (2 l+ 1)]o~oN h :]: )/0 ~-'~ Si • li (41) 
i 

M f  1) = [ ( j : k  1/2)/(2l + 1)]OtlL 4- ~1S 

4- YI ~ [ s i  - 3{si-! i, li}/21'(l' + 1)] (42) 
i 

M (El) -- --[( j -4- 1/2)/(21 + 1)]Or 2 ~ V(:)(li ® li) 
i 

"at- ~2 E V(2)(si ® li) 
i 

at" }/2 ~ V(2)[si ® V(3)(li ® li ® !i)], (43) 
i 

where the coefficients aq, ~q and yq depend only on L, l 
and l'. N h is the number of holes per ion. The expression 
V(R)(X ® Y) refers to a tensor of rank R constructed from 
tensors X and Y and the sum over i runs over the valence 
electrons. For quadrupole transitions, the first three 
operators have a similar form, differing only in the 
coefficients aq, ~q and yq. Luo (1994) derives complete 
expressions for M~E__~2) 4. Hamrick (1994) then uses the 
Wigner-Eckart theorem to re-express the effective 
scattering operators in terms of a new operator, ffq0, 
derived from J, the total-angular-momentum quantum 
number. This is permissible if J is a good quantum 
number and again this is generally true for the rare earths. 
Then (Hamrick, 1994), 

c~L)(I ' ;  Ij') = [~L)(I , ;  I) 4- r/~L)(/'; l)](ffqo), (44) 

where ~ and 17 are temperature-independent constants and 
the 4- corresponds to j = l 4- 1/2. The new operators ffqo 
are given by 

if00 = 1 

,71o = J z  

,.7"20 = 3Jz 2 -  g(J + 1) (45) 

if30 = 5J3 - 3JzJ (J + 1) + Jz 

ff4o = 35J 4 - 30Jz~J(J + 1 ) +  3 j2(J  + 1) 2 

+ 25J 2 - 6 J ( J  + 1). 

In order to calculate the measured correlation function 
for scattering from a solid, we make the assumptions that 
the only difference from site to site is the effective 
scattering operator, ,.Tqo, and that all other terms in (38) 
are constant across the solid. In this case, we may 
subsume all the resonance and polarization factors, and 

other constants, into an overall amplitude factor .,4 such 
that the scattering operator for a given site, n, is 

2L 
fn (EL) = .,4 E ~'qO" (46) 

q=O 

One may now follow the usual route to obtain the 
measured correlation function from a given scattering 
operator. For completeness, we reproduce it below. The 
double differential scattering cross section is, in general, 

d2cr/dI2dEf = ~ P}I (fl)--~f~ exp ( iQ.  rn)[i) 2 
iJ n 

X ¢~(hO.) -'[- E i -- E l ) ,  (47) 

where the ~ f  arises because X-ray scattering is not 
sensitive to the final state of the solid and ei is the 
probability that the system is in the initial state Ii). Using 
the completeness of the final states, )--~4 I f ) ( f l  = 1 and 
the constraint that E i = Ef, we obtain 

d2tr/d£2dE = ~Pi( i l f (Q) f ( -Q) l i )8(hw) .  (48) 
i 

With the definition (0) = ~-~i Pi(i[Oli), for any operator 
O, then, integrating over energy, we get 

(dcr/d£2)elastic (x ( f ( Q ) f ( - Q ) ) .  (49) 

Elastic scattering is sensitive to the static correlations, 
that is the correlation function may be more properly 
written 

(dcr/dl2)elasa c oc ( f ( Q ) f ( - Q ,  t =  c~)). (50) 

For the case of an incommensurate magnetic structure, 
the dipole scattering from each t e rm  in the series, 
q -  0, 1, 2, appears at a different point in reciprocal 
space and there is no interference. In this case, the cross 
section further simplifies to 

(do'/d;2) (m) (x ( J0o(Q)f f00( 'Q,  o~)) 

+ (ff10(Q),.710(-Q, oo)) 

+ (ffz0(Q)ff20(-Q, oo)). (51) 

Substituting (45) produces the important result that, at 
the first dipole resonant harmonic of an incommensurate 
magnet, the scattering is proportional to the correlation 
function (Jz(Q)Jz(-Q, c~)). The q = 1 quadrupole term 
has a similar form and so will measure the same 
correlation function. Higher-order harmonics will mea- 
sure slightly more complex correlation functions, as 
given by (45) and (51). 

5. Summary  

We have reformulated the X-ray resonant exchange 
scattering cross section in terms of linear polarization 
states. This allows for the presentation of the cross 
section in a simple matrix form such that the polarization 
dependences and the dependence of the scattering on the 
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individual components of the magnetic moment becomes 
explicit. This process was carded out for the experimen- 
tally important cases of electric dipole and quadrupole 
transitions. This formulation provides for the straightfor- 
ward interpretation of magnetic diffraction patterns in 
terms of the components of the magnetic moment. 
Examples are given of the calculated diffraction patterns 
from some simple magnetic structures. 

The appearance of higher-order moments in the cross 
section generates resonant harmonics, distinct from any 
structural harmonics that may or may not be present. It is 
an interesting question as to what magnetic properties are 
being measured at such resonant harmonics. In the 
second half of this paper, the measured correlation 
functions are derived under certain assumptions. We find 
that the scattering at the position of the first harmonic in 
an incommensurate system is proportional to the spin- 
spin correlation function (Jz(Q)Jz(-Q, c~)) while, at the 
position of higher harmonics, the scattering probes 
higher-order correlation functions. 

It is a pleasure to acknowledge stimulating and useful 
discussions with N. Bernhoeft, M. Blume and D. Gibbs. 
The work at Brookhaven National Laboratory was 
carded out under contract no. DE-AC02-76CH00016, 
Division of Materials Science, US Department of 
Energy. 
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